Корреляционный анализ многомерных случайных величин. Частные и множественные коэффициенты корреляции.
контрольные работы, Экономика Объем работы: 7 стр. Год сдачи: 2012 Стоимость: 9 бел рублей (290 рф рублей, 4.5 долларов) Просмотров: 323 | Не подходит работа? |
Введение
Заключение
Заказать работу
Вариант 6
Практическое задание
Имеются данные по прибылям двух компаний Необходимо:
1. Построить корреляционное поле
2. Вычислить коэффициент корреляции и проверить его значимость
3. Построить регрессионную модель.
4. Проверить значимость параметров модели
Практическое задание
Имеются данные по прибылям двух компаний Необходимо:
1. Построить корреляционное поле
2. Вычислить коэффициент корреляции и проверить его значимость
3. Построить регрессионную модель.
4. Проверить значимость параметров модели
другом позволяет ранжировать факторы по тесноте их связи с результатом.
В эконометрике частные коэффициенты корреляции обычно не имеют самостоятельного значения. Их используют на стадии формирования модели. Так, строя многофакторную модель, на первом шаге определяется уравнение регрессии с полным набором факторов и рассчитывается матрица частных коэффициентов корреляции. На втором шаге отбирается фактор с наименьшей и несущественной по -критерию Стьюдента величиной показателя частной корреляции. Исключив его из модели, строится новое уравнение регрессии. Процедура продолжается до тех пор, пока не окажется, что все частные коэффициенты корреляции существенно отличаются от нуля. Если исключен несущественный фактор, то множественные коэффициенты детерминации на двух смежных шагах построения регрессионной модели почти не отличаются друг от друга, , где – число факторов.
В эконометрике частные коэффициенты корреляции обычно не имеют самостоятельного значения. Их используют на стадии формирования модели. Так, строя многофакторную модель, на первом шаге определяется уравнение регрессии с полным набором факторов и рассчитывается матрица частных коэффициентов корреляции. На втором шаге отбирается фактор с наименьшей и несущественной по -критерию Стьюдента величиной показателя частной корреляции. Исключив его из модели, строится новое уравнение регрессии. Процедура продолжается до тех пор, пока не окажется, что все частные коэффициенты корреляции существенно отличаются от нуля. Если исключен несущественный фактор, то множественные коэффициенты детерминации на двух смежных шагах построения регрессионной модели почти не отличаются друг от друга, , где – число факторов.
После офорления заказа Вам будут доступны содержание, введение, список литературы*
*- если автор дал согласие и выложил это описание.